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Video ::

e Formally, a video is a 3D signal with: |

o Spatial Coordinates: x, vy  I(xyt)

o Temporal Coordinates: t

e Ifwe fix 't, we obtain an image (a.k.a
frame). So video can be seen as a

sequence of Images/Frames.




Real-world Applications :: W
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Real-world Applications
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Image Vs. Video
Classification ::
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Video Classification Techniques ::

1. Frame-level aggregation of 2D Convolutional Networks
a. Aggregating the frame-level information using pooling
b. Temporal information is lost
2. Two-Stream 2D Convolutional Networks
a. Perform convolution separately on both spatial and temporal
modalities
b. Complexity involved in obtaining multiple modalities
3. Recurrent Neural Networks and Temporal Convolution Networks
a. Model the temporal evolution of the frames using gating
functions and 1D convolutional kernels respectively
b. Do not handle space-time simultaneously
4.3D Convolutional Networks
a. Perform convolution across space-time simultaneously
b. Too rigid to capture subtle information
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1.Frame-Level Aggregation of 2D
CNN ::

—> Feature-Aggregation

Video-level features (F)
Frame-level Features

2D CNNs — VGG, f1 - Max Pooling

ResNet, Inception F = max(f;)
Min Pooling
F = min(f;)

Mean Pooling
i=1 fi
t

 —

Feature Extraction

7.

Max - Min Pooling
F = concat(max(f;)(min(f;))




How to Extract Frame-Level

Features?

Image Classifier

224 x 224 x3 224 x 224 x 64

12 x 128

56 x 56 x 256

i 7 x 7 x 512 I
27514 x 14 x 512

_ 1x1x4096 1x1x 1000
Sy

— convolution+ RelU
" max pooling
fully nected +RelU
softmax

—> Pre-trained on ImageNet

Extract feature from
Fully-connected layer
(FC-2)



[ ] 5
”
C
>
‘v‘:\:‘ P 2 ek
"8y ¢ *s st *
e - N c i s AL
W3 N oW Mo s
R o2
44, g™ oon ? X *
~“‘ AL\ \ -
S “ e he X
b TR e Vi WS L
T v 3 M 3,
oy g S § *
s " >y .
Pt ‘
AN v
‘3“:“ L oy
g e

Single Frame Late Fusion Early Fusion  Slow Fusion

I

{0

]

Il
= ALOOOOOL

b
ith

-
=




Observation:

e These frame-level pooling mechanisms provide a video descriptor
which encourages the salient frames in the video.

e The video descriptors for each videos are treated as data samples
for a classifier (like SVM) tfor classitying the videos.

e These video descriptors do not model temporal information and
only relies on the salient frame-level features.

e Then how should we model temporal information???




2. Two Stream 2D CNN ::

e ldea: To combine both Appearance and motion representations.
e Previous work: Failed because of the difficulty in learning implicite motion.

Spatial stream ConvNet

convi
7X7x96
stride 2
norm.
pool 2x2

conv2
5x5x256
stride 2
norm.
pool 2x2

conv3
IX3X5H12
stride 1

conv4
3x3x512
stride 1

convd
3x3x512
stride 1
pool 2x2

fullé
4096
dropout

full7
2048
dropout

softmax

Temporal stream ConvNet

conv1
7X7x96
stride 2
input . norm.
video multi-frame pool 2x2

conv2
5x5x256
stride 2
pool 2x2

conv3
3IX3XH12
stride 1

conv4
3x3x512
stride 1

convd
3IX3X5 12
stride 1
pool 2x2

fullé
4096
dropout

full7
2048
dropout

softmax

. optical flow

e Separate the Motion (multi-frame) from static appearance (single frame).

® The appearance and motion stream are not aligned.

@ Optical flow can only capture short term temporal dynamics




3. Recurrent Neural Network::

e RNNSs address the issue of
temporal dependency modeling In
videos.

e They are networks with loops In
them, allowing information to
persist.

e A recurrent neural network can be
thought of as multiple copies of
the same network, each passing a
message to a successor.

Outputs a

value attimet -

Neural

Network -

Input at time t




3. Recurrent Neural Network::

(h)
K=en

¢

he = fW(ht—lr Xt)

l

A typical example

/

Some function with parameter W

()
l
5

() ()
NIy
L

he = tanh(Wyphe—q, Whxx¢)




3. Single RNN Unit::

he = tanh(Whphe—1, WhxX¢)




3. Single RNN Unit::

he = tanh(Whphe—1, WhxX¢)




3. Limitation of RNN ::

h

A A A A A A
Not capable of learning long-term dependencies because of vanishing gradient
factor.




3. Long-short Term Memory
(LSTM)::

Two major characteristics of LSTM:

e [Information Persistence : Done using Cell States. These are like conveyor belts that runs
across time through which information flows.

e Prioritizing Information : This means which deciding information is useful for future and
which are useless and can be erased. Done using gates similar to digital logic, but are
controlled by neural networks.



3. Long-short Term Memory
(LSTM)::




3. Different Modules of LSTM:;

Four Major modules

1.Cell State 2. Forget Gate




3. Working of LSTM::

Input Gate : This gate selects which of the new information is useful.

i =0 (Wi lhi—1,2¢) + b)
é’t = tanh(We-|hi_1, 1¢]




3. Working of LSTM::

Forget Gate : — )

e Gates are a way to optionally let
iInformation through. They are

composed out of a sigmoid neural ’
net layer and a pointwise
multiplication operation.
e The first step in the LSTM is to J fr=0(Wrlhi-1,z4) + by)

decide what information we're
going to throw away from the cell
state.



3. Working of LSTM::

Cell State :

e [t’s now time to update the old cell
state, C, ,, into the new cell state C,

e The horizontal line, the cell state Is 0. ¢
. of i e e
kind of like a conveyor belt. It runs
straight down the entire chain, with ftT L % O, = fy%Cyy +ir 0
only some minor linear Interactions. r’(?'t A R

It’s very easy for information to just
flow along it unchanged.



3. Working of LSTM::

Output Gate :

e Finally, we need to decide what we’re going to output. This output will be based on
our cell state, but will be a filtered version.

o =0 (W, [hi_1,2¢] + bo)
hy = o4 x tanh (Cy)




3. Types of LSTM::

one to one

one to many

many to one

many to many

Vanilla mode of
processing without
RNN, from fixed-sized
input to fixed-sized
output (e.g. image
classification)

From fixed-sized input to
Sequence output (e.g.
image captioning: takes
an image as input and
outputs a sentence of
words)

From Sequence input to
fixed-sized output (e.g.
Video Classification: takes
sequence of
frames/images as input
and outputs a class label)

From Sequence input to
Sequence output (e.g. Video
Event Detection: takes
sequence of frames/images as
input and outputs a sequence
event labels for each frame)




3. Temporal Dependency modellhg W
with LSTM::

Action Class

BT =) R L%M}




3. Drawback of RNN/LSTM::

e RNN/LSTM are sequential and can not be parallelized.

e RNNs/LSTMs can only capture strong temporal change of the image level
features and the subtle features are ignored.

® Vanishing gradient issue (Can not remember long term temporal
iInformation).

® Not much efficient on small datasets (pre-training Is not a good idea as they
change the statistics learned by the gates).



3. Temporal Convolution Network

(TCN)::

e TCN encodes temporal dependencies by learning 1D
convolution filters across temporal dimension.

e |nputs and outputs a 3-dimensional tensors.

o Input shape: (Batch_size, Temporal length, Feature_size) and
o output shape: (Batch_size, Temporal length, Output_size).

® TCN can be causal (no information leakage from the future to
the past)

e TCN can use a very-deep network with the help of residual
connections, and it can look very far into the past to predict
with the help of dilated convolutions

dot product

output tensor

input tensor



3. Temporal Convolution Network.
(TCN)::

e TCN can follow Encoder-Decoder design
to model the dependency among

temporally neighbour and distant feature

maps.

00000000000 OGO®OO




3. Temporal Convolution Network\
(TCN)“ Action Class

I Softrmax I

T
b
T

I Segment max poaoling I




3. TCN Vs. LSTM::

e Parallelism e NO Parallelism

e Flexible Receptive Field Size e Fixed Receptive Field Size

e Stable Gradient e Vanishing Gradient Problem

e Low Memory Requirement e High Memory Requirement as it maintain Hidden
State

e Knowledge Transfer between
Domain can be possible e Not Possible to Knowledge Transfer between

Domain(Pre-training LSTM is not a good ldea)



4. 3D Convolutional Neural
Networks::

e 3DCNN uses three dimensional convolution filters to capture
spatio-temporal features in a short-snippet of video.

3D Convolution (XYT)

Input: [,,, ]

2D Convolution (XY)

Input: [” ] Output: [, , , #Kernel
Output: [, , #Kernel]
Kernel move In H’W dlrectlon H,, — Hin+2xpadding—dilati?nx(kerned_sz’ze—l)—l 1 k R
stride H q <|_L
Win+2 x padding—dilation x (kernel_size—1)—1 . output
Wour = - - stride +1 W :
H,; — H*'“meddmg_dﬂj::r(ke""”ez—me_l)_l +1 . _T,,+2xpadding - dilation x kernel,;, -1 -1
= , +1
" stride

Win+2 xpadding—dilation x (kernel_size—1)—1
Wcmt — +1

stride




4. 3D Convolutional Neural

Networks::

Input clip & 3D filters

4D tensors of shape  xHx W x C
H,W

2,

é —ﬁ

N

Architecture is a
version of ImageNet-design (e.g, VGG16,
ResNet, Inception, ShuffleNet, MobileNet ...)

uonoipaxd




4. C3D Architecture::

e C3D contains 3 x 3 x 3 convolutional kernels followed by 2 x 2 x 2 pooling at each layer.
e The network architecture contains 8 convolutional, 5 pooling layers and 2 fully connected layers.
e |t considers 16-frames snippets to extract spatio temporal feature representation.

Convla ||g| Conv2a ||| Conv3a Conv3b ||| Conv4da Convédb
64 |I€l| 128 |[§]| 256 256 |[€]] 512 512
k —>
“‘d<L
k AR
; output /
W

|_Fool4 |

Convba
512

Conv5sb
512

Pool5

fce
4096

fc7
4096

soltmax

C3D is Temporally extended version of VGG16




4. 13D Architecture::

13D Is designed by replacing the 2D kernels of GoogleNet by 3D kernels.
It Is extended by inflation from the spatial domain.

Unlike C3D it allows branching in the network architecture.

Two major component of 13D:

o Bottleneck Block

o Inception Block

e It considers 16/ 64-frames clip for spatio-temporal feature extraction.

13D is a 3DCNN version of GoogleNet (InceptionV1)




4. Bottleneck Block ::

“bottleneck layer”

CONV 1x1
16 filters

>

CONV 5x5

28 x 28 x 16 32 filters

(of 1x1x192)

28 x 28 x 192

|

|

Computational cost:

(28*%28*16) * (1*1*192) =

2.4 mli

N

>

(of 5x5x16)

28 x 28 x 32

Computational cost:

|

(28%28%32) * (5*5*16) = 10 ml

e

Total Computational cost: 12.4 ml|



4. Inception Block ::

Filter
concatenation

[ ——

1x1 convolutions

3x3 convolutions

ox5 convolutions

Previous layer

e |

3x3 max pooling

T~ =

(a) Inception module, naive version



4. 13D Network

Inflated Inception-V1

Rec. Field: Rec. Field:
ik R 11,27.27

stride 2

Rec. Field:
23,75,75

/_\ l, f—
Inc. =— Inc. Inc. 4—1 Inc. '—-{

Y | L O ol Y

Rec. Field: Rec. Field:
59,219,219 99 539,539

Inc.

Predictions

Inc. | Inc.




4. 13D Network ::

Inflated Inception-V1

Rec. Field: Rec. Field:
Vs f I 11,27.27

Video

Rec. Field:
23.75,75

Inc. =— Inc. lw—i Inc. +— Inc. |

Rec. Field: Rec. Field:
59,219,219 99,539,539

Predictions

ine.

Limitations of 3DCNN

® Rigid spatio-temporal Kernels limiting them to capture subtle motion.

® No specific operation for discriminative feature representations.



Summary ::

Classical Image Models

Video data
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After 15 Min. Break

¢ Introduction to HAR: Human Action Recognition and Challenges
4 Multiple Modalities iIn HAR
¢ Attentions in HAR (Spatial, Temporal, Self Attention)
€ Recent Popular Techniques
e Transformer Models (VIT, ViviT, Swin, VideoSwin)
e Self-supervised Models (MAE, VideoMAE)
e Vision and Language Models (CLIP)



Why Human Action 2
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Human Action
Recognition (HAR) ::

e |t can be formulated as a VIDEO
Classification task and it requires
Holistic human behavior modeling. 4 } ﬁ A sﬁ
e Input: A clipped/trimmed Video
(sequence of Images/Frames)

\

HRunH

e Output: An Action Label



Typical Human \
Actions::

Drink UselLaptop Burglary Shoplift
«Rea¢ challenges: Robbery

o Subtle Motion
o High-Intra-class Variance

o Low-Inter-class VVariance



Challenges::

Subtle Motiqn:-

- .
»
l! ol ' ‘! -.0'
. — v
‘ "
: ; X '.
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e Same Background e Different Actions

e Almost Similar Posture



Challenges::

High-Intra-class Variance:-

Drinkina -

e Same Background e Different Posture (sit, stand)

e Same Actions



Challenges:: T

Low-Inter-class Variance:-

g D

a Ooff

e Same Background e Different Actions

e Almost Similar Posture



How to Tackle
Challenges::

e Usage of Different Modalities to capture unique Cues

Appearance Motion

(RCE)I(B) ture (Optical Flow) (3D
e Discriminative Temporal Modeling (with Attention Mechanism and

Transformer Models)



How to Tackle
Challenges::

e Usage of Multiple Modalities in IMAGE and VIDEO models to capture category

specific unique Cues.

e Salient Feature Learning with Attention Mechanism (Spatial, Temporal, Spatio-

Temporal)

e Robust spatio-temporal Feature Correlation Learning with powerful Transformer

Models.

e Pre-training Large self-supervised, vision-language model to obtain

discriminative human and object centric cues for HAR.



ple Modalities::

4
1 f/

——

Appearance Motion
(RGB) (Optical Flow) I
Posture g
W e Computes displacement of each e 3D Coordinates of ‘N’ key joints on Lamr "
S/ S keleton s) pixel w.r.t. previous Frames Human body Tensor. 5 1 ?9;‘-3 ye
. _ = S?
* Represented by you Displacement Tensor: [N x]xT | <
Vectors: (i) along X-axis, (ii) along | //1}'(13
y-axis. e Acquisition \‘ 7 '
Tensor: [Hx W x 2] x T q A1 1%
o Kinect Camera 1,; | ‘5
o 5 -

e Acquisition o Pose Estimation Algo. from

: RGB images (LCNet,
| x W x 3] x
ensor: [HxW x 3] x T o Flow Camera OpenPose, YOLO-V7 Pose)

o Flow Estimation Algo. (RAFT,

TVF1, FlowNet, PwcNet)

Red Green




Benefits of Combining
Multiple Modalities::

* Provide complementary information.

Irrelevant  S~———"
Objects

't % Wear glasses

|
| %
=

Sit down Take off glasses

3D poses Optical flow



Benefits of Combining
Multiple Modalities::

Flow
Camera Flow
Estimation (TVF1, ElowNet...)
Algo
Camera %‘-&jiié
Scene — l.‘gh;, Deep Net

_ Pose
j&m\ Estimation (LCRNet, Openpose...)
Camera Algo



Drawbacks of Different
Modalities::

e Optical Flow:

o Time consuming in extracting
Flow from RGB at Inference

o Scenario information is missing

e 3D Poses:

o Object iInformation is missing

Use fridge Use cupboard

Irrelevant Objects (Laptop, Books) Info.

e RGB:

o Contains Most Information but
can be Noisy as well. Action: Sit Down




Attention Mechanism::

The girl is drinking water from a bottle

e Primary purpose of Attention: To imitate
human visual cognitive systems and focus on
essential features. (or) Learn how to pick
relevant information from input data.

e Key Idea: To focus on the significant parts in an

IMmage and suppress unnecessary information.

Time-1  Time-2 | Time-3 Time-4 | Time-5  Timeb6

e CNN with Attention: are used to make CNN
learn and focus more on the important
iInformation, rather than learning non-useful
background information.

» Isn’t this enough for an inference?

Focus in the Spatial space is required!

Spatial Attention Temporal Attention

Original Image Focus on ‘Cat’ Focus on [ ‘Dog’



Classical Attention
Mechanism:;

e Squeeze-and-Excitation Attention
(Channel Attention)

e Convolutional Block Attention Module
(Channel + Spatial Attention)

e Spatial-Temporal Attention

e Self-Attention

The girl is drinking water from a bottle

» Isn’t this enough for an inference?

Focus in the Spatial space is required!

Time -3 Time -4

Time-5  Time6

Spatial Attention

Temporal Attention




Squeeze-and-Excitation Attention::

e Observation in CNN:;:

o Feature Extraction from CNN shrinks the spatial
Dimension and expands the channel dimension

o All channels are weighted equally when
considering the output feature map

o Key ldea: Assign each channel a different

weightage based on how important each channel
IS .

(b)

E Ftr-
A D
- A
Cf
l X
Block-i
I < W x<C
\‘ ————————————— \
"'l Global |
| .
I_ ___ ___ ________________
| FC Ix1xC/r |
| Y |
| |
i|_ReLU Ix1xC/r |
Y ' Excitation
L_FC Ix1xC |
| + |
| |
S1 1d
| e IxX1xC :
Y L o o e o e |
Scale HxWx(C  Reweight
' g



Squeeze-and-Excitation Attention::

3 main Parts of SE:

Squeeze: Global Average Pooling is performed on the output > &
feature map of the CNN layer across H and W and the result of c |
output tensor shapeis1x1x C.

o o . . . X
Excitation: Vector from the previous operation is passed ' _
through two successive Fully-Connected Layers. This serves the iiia s | HXWxC
purpose of fully capturing channel-wise dependencies that were N |
aggregated from the spatial maps. A ReLU activation is booling | 1x1xC Squeeze.

performed after the first FC layer, while the sigmoid activation is

reduction ratio such that the intermediate output of the first FC

used after the second FC layer. In the paper, there is also a [ rc 1x1xC/r

. ) ) . : ReLU |
layer is of a smaller dimension. The final output of this step also = AR —
has a shape (1x1xC). i3 e o i
Reweight: Lastly, the output of the computation step is used as R ixixc !

a per-channel weight modulation vector. It is simply multiplied Y el !
with the original input feature map of size (H x W x C ). This scales ]
the spatial maps for each channel according to their ‘importance’. X (b)




Squeeze-and-Excitation Attention::

N ~

SE Blocks can be easily integrated with many existing CNNs like Inception VI,
t

DA~ ~+ ~ o~
RCTSINTLS, C.
X X
X X 1 r
— = Residual Residual P
Inception [nception - _..:‘-
v X \ Global pooling Lx1xC
Global pooling ) X !
Inception Module 1 Ixlxc FC C
. 1x1x—
FC 1%1x%— ResNet Module v r
! RelLU C
] . I lxlx;
RelU 1 %1 x -
: FC 1x1xC
FC 1x1xC —+

— Sigmod | 4,14

Sigmoid Ix1xC H-r'?_

! ,..-: Scale _
HxWxC
Scale Hx WxC _
HxWxC

| %

SE-Inception Module SE-ResNet Module

Fig. 2. The schema of the original Inception module (left) and the SE-
Inception module (right).

Fig. 3. The schema of the original Residual module (left) and the SE
ResNet module (right).



Convolutional Block Attention
Module (CBAM)::

Convolutional Block Attention Module
[ Channel A

e Key Idea: To combine both channel and

spatial attention, thus CBAM has two Input Feature Attention Aftﬁi”ﬂ Refined Feature
sequential sub-modules: = \ j Module
o Channel Attention Module (CAM): Similar — Q-

to SE attention with a small modification,

EeA. l|\£|1steac?| of single AVERAGE pooling, e  Channel Attention Module

applies both AVERAGE and MAX VN Vi

pooling to preserves much richer o _/' DO

contextual cues. L F\ Shared P = C“"’““EL.’Z“E“““;
o Spatial Attention Module (SAM): is three- ( Spatial Attention Module

fold sequential operations, (i)Channel con

Pool that decomposes a (c x h x w) ﬂﬁfﬂ*@*ﬁ

dimension input tensor to 2 channels, I.e.

(2 x h x w), where each of the 2 channels Ny i B

represent Max Pooling and Average
Pooling across the channels. (ii)
Convolutional Layer, (iii) Batch Norm

e CBAM is applied at every convolutional
block in deep networks to get subsequent
"Refined Feature Maps" from the "Input
Intermediate Feature Maps".



Convolutional Block Attention
Module (CBAM)::

| Spatial attention |
: Channel attention 1

1
. A -

. 1 r”
P M. F Mg F | Next
anvios | —( e 62N (T o
: I
' .
ResBlock + CBAM
Placement of Spatial and Channel Attention Modules sequentially.
Botenack Bomerock
Resoual Block Layer of ResNet Resicual Block Layer of ResNet
(r Layer 1 N = ; s >\
' - o |
m — | B o oo oo By Jy TT'N'N'N'N'iDHiDHD@ F T G ST 0 8 e L 2almm s 1 1 1 s LB (v aen
~»  CBAM > 1 —»  CBAM % L] —> CBAM ~» —»  CBAM X
LN N \ LN LIS
(] c2 ca c4 . C1 c2 C3 C4
\Gomouumu Filters Convolutonal Fiters J Convoiutional Filters Convolusonal Fiters /

Placement of CBAM module in ResNet architecture.




Spatio-Temporal Attention::

e Key Idea: To learn pose driven attention
mechanism for highlighting the spatial and
temporal saliency of human actions in a
dissociative/separate manner.

o Coupling spatial and temporal attention is difficult for
spatio-temporal 3D ConvNet features.

o spatial attention: focus on the important parts of the
Image, temporal attention: focus on the
pertinent/salient segments of the video.

o Uses 3D skeleton poses to compute the spatio-
temporal attention weights.

o It uses stacked-LSTM to encode the temporal
consistency of 3D skeletons, which is first pre-
trained and then used for attention map computation.

‘,A

Input clip

Skeleton input

% 13D base

Skeleton input

Separable
spatio-temporal
attention module

tXmXnXc

(m x n) Spatial Attention weights

Convolutional feature
map from 13D

Separable
spatio-temporal

attention module

Predictions

4

£ )\

Skeleton input

B\ EEEE
5 (|
5 & l\‘
-

l B
N

(m x n) Spatial
Attention weights

(t) Temporal

Attention weights




Self Attention:;

e Goal: To capture dependencies and relationships within input sequences.

e Each element attends to every other element. (or) Computes the correlation among
the feature vectors in as sequence.

e How it Works:

o |t transforms the input sequence into
three vectors: query, key, and value.
These vectors are obtained through I TXD
linear transformations of the input. _ f) . | _transpose Attention Map (Att)

o Second, the attention mechanism
calculates a weighted sum of the
values based on the similarity
between the query and key vectors.

1x1 conv softmax

TXT

o The resulting weighted sum, along =
with the original input, is then passed  Convolutiona

Feature Maps (X)

through a feed-forward neural | hix) .

network to produce the final output. 1Ab ’L— Slfattention

.__;*-‘ TXD Feature Maps
TXD

1x1 conv




Self Attention:;

Self Attention in Non-Local Network::

e Benefits:

o Long-range dependencies: It allows
the model to capture relationships
between distant elements in a
seguence, enabling it to understand
complex patterns and dependencies.

o Contextual understanding: By
attending to different parts of the
INput sequence, self-attention helps
the model understand the context
and assign appropriate weights to
each element based on its relevance.

o Parallel computation: Itcan be
computed in parallel for each element
IN the sequence, making it
computationally efficient and scalable
for large datasets.

zi TxHxWx1024

Ix1xl
I'xHxWx512
softmax THWx512
THWxTHW
_,@}._

THWx512 512xTHW THWx3512
I'xsHxWx312| TxHxWx512 TxHxWx512
@: Ix1xl] ¢: I1x1x1 g: 1xIxl
T I TxHxTWxH}E'J T

13D Network




Transformer Models:

e Transformer are standard architecture for
sequence modeling in Natural Language
Processing.

e A Pure Transformer:

o Performs excellent on standard computer
vision tasks (like image classification) when
applied directly to sequence of image patches
or tokens.

o Achieves State-of-the art results on benchmark
problems and can learned representations are
transferable to other problem domains

e Key Components:
o Self-Attention or Multi-Head Attention
o Position Embedding

o Feed Forward
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Transformer Models:

e Transformer are standard architecture for
sequence modeling in Natural Language

Processing.

e A Pure Transformer:

o Performs excellent on standard computer
vision tasks (like image classification) when
applied directly to sequence of image patches

or tokens.

o Achieves State-of-the art results on bench
problems and can learned representati

e Key Components:

o Self-Attention or Multi-

o Position Embed

o Feed Forward
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Transformer Models:

Self-Attention or Multi-Head Attention Position Embedding

Linear

i “

bt 80 100 120
caled Dot-Product l (o f) T
S | h ( lt) —}("’:} B f(t){lj — {Siﬂ(tﬂk.t), if 1 = 2k

Attention : cos(wi.?) b= cos(wg.t), ifi=2k+1
: ! : . sin(ws. t)
- .= -~ == -~ = ﬁ . CGS(wg. t) W — 1 —
Linear l Linear ' Linear Pt = 10000
\F yr v
Sill(wdf'g. t)
_cos(wdfz.t)_ in1




Vision Transformer (ViT):

e |In VITs, images are represented as sequences,
and class labels for the image are predicted,
which allows models to learn image structure
Independently.

e How ViT works?

Vision Transformer (ViT) Transformer Encoder

o Split an image into patches (Tokenize) i . A

ass X

Bird
o Flatten the patches Bll [ oo :

Car MLP
o Produce lower-dimensional linear & ]

embeddings from the flattened patches et Eacade: Norm

Attention
standard transformer encoder (for o e Linear Projection of Flattened Patches LA
Interaction among tokens) NEE N Norm

—Jil%ﬁi

o Pretrain the model with image labels (fully ﬁ%

Embedded
Patches

I
i
i
I
I
l
:
o Add positional embeddings L ) G}——
y | ,
o Feed the sequence as an input to a M Embedding | > ﬁIt] @5 @I’J . Muli-Head
I
I
I
I
I

supervised on a huge dataset)

o Finetune on the downstream dataset for
Image classification



Vision Transformer (ViT):

M
o
e

O

ultiple blocks in the VIT encoder, and each
ock consists of three major processing

ements:

Layer Norm: It keeps the training process
on track and lets the model adapt to the
variations among the training images.

Multi-Head Attention Network: Generating
attention maps from the given embedded
visual tokens. These attention maps help
the network focus on the most critical
regions in the image, such as object(s).

Multi-Layer Perceptrons (MLP): MLP is a
two-layer classification network with GELU
(Gaussian Error Linear Unit) at the end. The
final MLP block also called the MLP head, is
used as an output of the transformer.

Transformer Encoder

L x

o=

MLP

4

Norm

(O—

Multi-Head
Attention
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Norm

Embedded
Patches

Position embedding similarity
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VIT vs. CNN:

e ViT has more similarity between the representations obtained in shallow and deep-layers
compared to CNNSs.

e Unlike CNNs, VIT obtains the global representation from the shallow layers, but the |local
representation obtained from the shallow layers is also important.

e Skip connections in VIT are even more influential than in CNNs (ResNet) and substantially
Impact the performance and similarity of representations.

e VIT retains more spatial information than CNN.

e VIT can learn high-quality intermediate representations with large amounts of data.

e \/ITicmore <calahle and Ffficient compnarad to C NN



A Video Vision Transformer (ViVIT):

Position + Token
Embedding

Embed to
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Figure 2: Uniform frame sampling: We simply sample n; frames,
and embed each 2D frame independently following ViT [!Z].

Figure 3: Tubelet embedding. We extract and linearly embed non-
overlapping tubelets that span the spatio-temporal input volume.




A Video Vision Transformer (ViVIT):
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Figure 4: Factorised encoder (Model 2). This model consists of
e . . . .
—\:L el | . ] ] l two transformer encoders in series: the first models interactions
( rokenembedsing }—sd> st § 8 < % 5| between tokens extracted from the same temporal index to produce
3 ‘ S . . .
i a latent representation per time-index. The second transformer
NS [/ Secpn st P models interactions between time steps. It thus corresponds to a
“late fusion” of spatial- and temporal information.

Figure 5: Factorised self-attention (Model 3). Within each trans-
former block, the multi-headed self-attention operation is fac-
torised into two operations (indicated by striped boxes) that first
only compute self-attention spatially, and then temporally.




Swin Transformer:

e Swin Transformer builds hierarchical feature maps by
merging image patches in deeper layers compared to ViTs
that produces feature maps of a single low resolution.

e |t is enabled by shifted window to build hierarchical feature
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(a) Architecture (b) Two Successive Swin Transformer Blocks

Figure 3. (a) The architecture of a Swin Transformer (Swin-T); (b) two successive Swin Transformer Blocks (notation presented with
Eq. (3)). W-MSA and SW-MSA are multi-head self attention modules with regular and shifted windowing configurations, respectively.
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Figure 2: An illustration of two succes-

Figure 1: Overall architecture of Video Swin Transformer (tiny version, referred to as Swin-T). . ' :
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CLIP:: Contrastive Language-imag
Pre-training

Background of Image-Text Pair

N\ (
This is an A kid Welcome This is a This is a
image of a doing a to my picture of picture of
flamingo. kickflip. | website! my dog. my cat.
/ J
Image-Text Pairs dataset Video-Text Pairs dataset Multi-Modal Massive Web (M3W) dataset
[N=1, T=1, H, W, C] [N=1, T>1, H, W, C] [N>1, T=1, H, W, C]

e N: Number of visual inputs for a single example
e T:. Number of video frames
e H,W, C: height, width, color channels



CLIP:: Contrastive Language-Image

Pre-training

(1) Contrastive pre-training

Pepper the
aussie pup ——
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400 million (image, text) pairs collected
from Internet.

Trained modifications of ResNet-50
and ViT-B

Batch size 32 768 for 32 epochs

The largest ResNet model, RN50x64,
took 18 days to train on 592 V100
GPUs while the largest Vision
Transformer took 12 days on 256
V100 GPUs



CLIP for Zero-shot Classification
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Figure 5. Zero-shot CLIP is competitive with a fully super-
vised baseline. Across a 27 dataset eval suite, a zero-shot CLIP
classifier outperforms a fully supervised linear classifier fitted on
ResNet-50 features on 16 datasets, including ImageNet.
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e poor generalization to images not covered Pod 0.4%
in its pre-training dataset (MNIST) library 0.0%
; . : ; izza 0.0%

e counting the number of objects in an image 3
toaster 0.0%
e predicting how close the nearest object is in dough 0.1%

a photo

Granny Smith 0.1%
e CLIP's zero-shot classifiers can be sensitive —
to wording or phrasing and sometimes Aprary e
require trial and error “prompt engineering” e Wit
toaster 0.0%

to perform well.

dough 0.0%



Summary::

Combining Multiple
Modalities for HAR
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